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1. Introduction

This is our second paper of a series devoted to the thermal properties of a pure gauge

theory within a five-dimensional framework nowadays known as AdS/QCD. We explore

further the model proposed in the first paper [1]. It is based on the following Euclidean

background metric

ds2 = R2 h

z2

(

fdt2 + d~x2 +
1

f
dz2

)

, h(z) = e
1
2
cz2

, f(z) = 1 −
(

z

zT

)4

, (1.1)

where t is a periodic variable of period πzT such that zT = 1
πT

, with T , the temperature. At

zero temperature, we have in fact the slightly deformed AdS5 metric. Such a deformation

is notable because it results in a Regge-like spectrum. This fact allows one to fix the value

of c from the ρ meson trajectory. For our purposes, we use the estimate of [2]

c ≈ 0.9GeV 2 . (1.2)

It is worth noting that the metric (1.1) does not contain any free fit parameter. More-

over, the only dimensionful parameter of our model is the Regge slope of meson trajectories.

It is quite unusual for QCD, where it is ΛQCD . Thus, evaluations of thermodynamic quan-

tities and the Polyakov loop we are going to undertake can be considered as a further

consistency check of our model.

For the case of interest, let us briefly point out a couple of facts.

(i) The free energy of a heavy (static) quark-antiquark pair at finite temperature is

expressed in terms of a correlator of two Polyakov loops [3]

F (r, T ) = −T ln〈L(~x1)L
†(~x2)〉 + Tc(T ) , (1.3)
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with r = |~x1 − ~x2| and ~xi being a point in R3. In (1.3) the free energy is defined

up to a normalization constant c(T ) which is related to the infinite self-energy of the

quarks.

There is a subtle point here. In the literature F is often called the heavy quark

potential at finite temperature. Apparently, such a definition discards the entropy

contribution.1

An order parameter for the confinement-deconfinement phase transition is the expec-

tation value of the Polyakov loop. After the normalization of (1.3), it is then

L = exp

{

− 1

2T
F (r = ∞, T )

}

. (1.4)

(ii) In discussing a Wilson line within AdS/CFT (QCD) [5], one first chooses a contour C
on a four-manifold which is the boundary of a five-dimensional manifold. Next, one

has to study fundamental strings on this manifold such that the string world-sheet

has C for its boundary. The expectation value of the loop is schematically given by

the world-sheet path integral

〈W (C) 〉 =

∫

DX e−Sw , (1.5)

where X denotes a set of world-sheet fields. Sw is a world-sheet action.

In principle, the integral can be evaluated semiclassically in terms of minimal surfaces

that obey the boundary conditions. The result is written as

〈W (C) 〉 =
∑

n

wne−Sn , (1.6)

where Sn means a regularized minimal area whose relative weight is wn.2

The paper is organized as follows. In section 2, we develop the framework we will

work. In section 3, we present, on the basis of AdS/QCD, a few results on a heavy quark-

antiquark pair in a thermal medium. In particular, we exhibit the free energy, the string

tension, and the entropy at low temperatures as well as the Polyakov loop expectation

value. We conclude in section 4 with a discussion of some open problems.

2. General formalism

Our basic approach will be as follows. It is believed that the correlator of the two Polyakov

loops has a path integral representation like that of the Wilson loop.3 Given the background

metric, we can attempt to evaluate the values of the regularized areas Sn. If we then discard

1For a discussion of this issue, see, e.g., [4] and references therein.
2The point is that the areas are divergent but the divergences are proportional to the circumference of

C.
3Note that the corresponding world-sheet has now two boundaries.
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Figure 1: Schematic representation of the effective potential below and above T1.

quantum fluctuations of strings, in the case of one dominant exponent we will get that the

free energy is simply proportional to a proper S∗

F = TS∗ . (2.1)

Note that the regularized areas are defined up to normalization constants. Since these

constants are in fact due to the infinite self-energy of the quark sources, we omit c(T ).

Moreover, w∗ can be absorbed into a proper normalization constant too. In this paper we

will use the approximation (2.1).

But before going on, let us shortly pause here to gain some intuition about the problem

at hand. As in [1], we introduce the notion of an effective string tension depending on the

fifth coordinate z. It is given by4

σ(z) =
h

z2

√

f(z) . (2.2)

Now consider the behavior of a string bit in the effective potential V = σ(z). An

important observation is that the form of V is temperature dependent. Indeed, a short

algebra shows that there is a special value of temperature T1 = 1
π

√

c√
27

≈ 130MeV.5

Below T1 the effective potential has local extrema at

zmin = zT

√

2√
3

sin

(

1

3
arcsin

T 2

T 2
1

)

, zmax = zT

√

2√
3

sin

(

π

3
− 1

3
arcsin

T 2

T 2
1

)

, (2.3)

while above this temperature the potential is just a decreasing function of z as shown in

figure 1.

Such a behavior clearly has some of the suspected properties of gauge theory at finite

temperature.6 For temperatures below T1 the string ended on the heavy quark-antiquark

pair set at z = 0 can not get deeper than zmin in z direction because a repulsive force

prevents it from doing so. This gives rise somewhat of a wall located at z = zmin. The large

4It follows from eq.(2.6).
5We use (1.2) for all estimates.
6The notion of the effective potential turned out to be useful in studying symmetry breaking (phase

transition) within field theories at finite temperature [6]. Like in field theory, our model also has the

effective potential whose form is temperature dependent.
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distance physics of the string is determined by this wall. Since the value of the effective

potential (string tension) at its minimum is not vanishing, the quark-antiquark free energy

has a dominant linear term whose coefficient is proportional to σ(zmin). So, this can indeed

be interpreted as the low temperature phase. On the other hand, for temperatures above

T1 the string can get deeper and finally reach the horizon z = zT. The large distance

physics is now determined by the near horizon geometry. The crucial point is that the

effective potential vanishes on the horizon. As a result, there is no linear term in the

quark-antiquark free energy. This can be interpreted as the deconfined phase.7

Now let us go back to the approach and choose a pair of the contours (Polyakov loops)

living on the boundary (z = 0) of our five dimensional space. We set

~x1 = (− r
2 , 0, 0) , ~x2 = ( r

2 , 0, 0) . (2.4)

Next we want to look for static configurations of the world-sheet action. To this end,

we make use of the Nambu-Goto action equipped with the background metric (1.1)

S =
1

2πα′

∫

d2ξ
√

det Gnm∂αXn∂βXm . (2.5)

There are basically two types of configurations to be considered. One type describes con-

nected surfaces whose boundaries are the Polyakov loops, while another describes discon-

nected surfaces.

Our first goal will be to analyze connected surfaces. In this case the world-sheet

coordinates ξ’s can be chosen as ξ1 = t and ξ2 = x. With such a choice, the action takes

the form

Sw =
g

2πT

∫
r
2

− r
2

dx
h

z2

√

f + (z′)2 , (2.6)

where g = R2

α′ . A prime denotes a derivative with respect to x.

It is easy to find the equation of motion for z

zz′′ +
(

f + (z′)2
)

(2 − z∂z ln h) −
(

1

2
f + (z′)2

)

z∂z ln f = 0 (2.7)

as well as its first integral

c =
hf

z2
√

f + (z′)2
. (2.8)

On symmetry grounds, we have z′|x=0 = 0. This allows us to express the integration

constant c via the value of z at x = 0. So, we get

c = σ|z=z0
, (2.9)

where σ is defined by (2.2) and z0 = z|x=0.

7Although the above arguments indicate that the phase transition occurs, we should caution the reader

that it is a qualitative way of thinking about the problem at hand.
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Figure 2: Typical graphs of r(i) below T1. Here T = 0.05 GeV.

Next we perform the integral over
[

− r
2 , r

2

]

of dx. By virtue of (2.8), it is given by

r = 2

∫

C

dz√
f

(

(σ

c

)2
− 1

)− 1
2

, (2.10)

where C is a contour in z plane.

We look for solutions that obey the following condition z0 = max z. The reason for

this is that, on general grounds, the string ended on the quarks set at x = ±r/2 reaches

the deepest point in z direction at x = 0.

For temperatures below T1, there are two possibilities for C and, as a result, we have

r(1) = 2

∫ z0

0

dz√
f

(

(σ

c

)2
− 1

)− 1
2

, with 0 ≤ z0 ≤ zmin , (2.11)

r(2) = 2

∫ z0

zmax

dz√
f

(

(σ

c

)2
− 1

)− 1
2

, with zmax ≤ z0 ≤ zT , (2.12)

but otherwise r is complex. After a short inspection we find that r(1) is a continuously

growing function of z0 on the interval [0, zmin]. Moreover, it equals to zero at z0 = 0 and

goes to infinity as z0 → zmin. The function r(2) is, unlike r(1), decreasing. It goes from its

maximum (finite) value r(2)
max

at z0 = zmax to zero at z0 = zT (on the horizon). Thus, the

second solution contributes only at distances smaller than r(2)
max

. To complete the picture,

we present the plots of r(i) in figure 2.

When temperature is increased, the interval [zmin, zmax] becomes smaller and finally

disappears at T = T1. For T > T1, a simple analysis leads to the picture that differs

noticeably from that of figure 2. The point is that both the solutions now contribute only

at distances smaller than some finite rmax. This is illustrated in figure 3.

Now we move on to the second type that describes disconnected surfaces. In this case

a surface contains two pieces each of which has a topology of a cylinder. The cylinders are

stretched from the Polyakov loops on the boundary to the horizon. If we use ξ1 = t and

ξ2 = z as the world-sheet coordinates, the Nambu-Goto action is then

Sw =
g

2πT

∫ zT

0
dz

h

z2

√

1 + f(~̇x)2 , (2.13)

where a dot stands for a derivative with respect to z. The equation of motion for x is

d

dz

(

σ~̇x
(

f−1 + (~̇x)2
)− 1

2

)

= 0 . (2.14)

– 5 –



J
H
E
P
0
4
(
2
0
0
7
)
1
0
0

Figure 3: Typical graphs of r(i) above T1: r(1) is growing from 0 to rmax, while r(2) is decreasing

from rmax to 0. We set T = 0.5 GeV.

It is obvious that it has a trivial solution ~x = const that represents a straight string

stretched between the boundary and the horizon. We will call the choice (2.4) the solution

r(∞). Since this solution makes the dominant contribution, as seen from the integrand

in (2.13), we will not dwell on other solutions here.

Having discussed the solutions, we can now see what happens with the corresponding

areas. We begin with the solution r(1). To this end, we use the first integral to reduce the

integral over x to that over z in (2.6). Since the integral is divergent at z = 0 due to the

factor z−2 in the background metric, in the process we regularize it by imposing a cutoff

ǫ. At the end of the day, we have

SR

1 =
g

πT

∫ z0

ǫ

dz

z2
h

(

1 −
(

c

σ

)2
)− 1

2

. (2.15)

Subtracting the 1
ǫ

term we find a finite result

S1 = − g

πTz0

+
g

πT

∫ z0

0

dz

z2

[

h

(

1 −
(

c

σ

)2
)− 1

2

− 1

]

+
c(T )

T
, (2.16)

where c(T ) stands for a normalization constant.

For the second solution r(2), it is a little bit tricky because the minimal surface is built

by sewing together two pieces. The first piece comes from r(∞) defined on the interval

[0, zmax]. At z = zmax, it is sewn with the second piece coming from r(2). The integral (2.13)

is divergent at z = 0, so we regularize it by imposing the cutoff ǫ as before. After subtracting

the divergency, we get

S2 = − g

πTzmax

+
g

πT

∫ zmax

0

dz

z2
(h − 1) +

g

πT

∫ z0

zmax

dz

z2
h

(

1 −
(

c

σ

)2
)− 1

2

+
c(T )

T
. (2.17)

Note that both the areas are regularized in the same way, so the corresponding normaliza-

tion constants coincide.

For the third solution, the minimal area can be read off from eq.(2.17). One drops

the third term as coming from the solution r(2) and replaces zmax with zT in the remaining

terms. The area is then

S∞ = −g +
g

πT

∫ zT

0

dz

z2
(h − 1) +

c(T )

T
. (2.18)
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Figure 4: Typical graphs of Si. Here T = 0.1 GeV and c(T ) = 0.

Now let us look at the Si ’s as functions of r. We begin with sufficiently low tempera-

ture. Since the solution r(2) is defined only for distances smaller than r(2)
max

, it makes sense

to first probe asymptotic behaviors near the point r = 0. A short inspection shows that S1

is not bounded from below, while the others are bounded. This provides a bit of evidence

in favor of dominance of S1 at small distances. Further numerical calculations show that

this is indeed the case. Moreover, the first solution turns out to be dominant at physical

distances too.8 We present the plot of the regularized areas in figure 4.9

From this figure it is also clear that there exists a critical distance rc such that for

larger distances S∞ becomes dominant. There is an apparent reason for this. At very

large distances the quark and the anti-quark decouple from each other. Usually, instability

occurs in models with dynamical quarks, where a string breaks. In the case of interest this

occurs due to emission of closed strings (glueballs). As known, in AdS/QCD a free particle

is described by a straight string stretched between the boundary and the horizon that is

nothing but our solution r(∞).

When temperature is increased, two effects are seen: (1) The minimal difference be-

tween the functions S1 and S2 becomes smaller. (2) The critical distance rc is decreasing.

For temperatures close to T = T1, S1 is no longer dominant at physical distances and it is

time to account for the other solutions in the series (1.6).

3. Applications

In this section we will consider some applications of the developed formalism. We will focus

on the cases where the approximation (2.1) might be applicable.

3.1 Free energy at low temperature

We begin with temperatures which are sufficiently smaller than T1. In this case the free

energy can be evaluated by using (2.1) with S∗ = S1.
10

First, we need to fix the normalization constant c(T ). In doing so, we follow [7] and

look for the small r expansion of the free energy. Since small distances correspond to small

8We mean the interval 0.2 fm . r . 2 fm that is of primary importance for phenomenology.
9The overall constant g can be fixed from the slope of the heavy quark potential at zero temperature.

We use the estimate of [8] g ≈ 0.94, here and below.
10In the remaining part of this section we omit the index specifying the solution each time when the

meaning is clear from the context.
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deviations in z direction, we need to study the expressions (2.11) and (2.16) near z0 = 0.

The asymptotic behavior of r(z0) is given by11

r =
1

ρ
z0 −

c

4ρ
(1 − πρ2)z3

0 + O(z5
0 ) , (3.1)

where ρ = Γ2
(

1
4

)

/(2π)
3
2 .

In a similar way we find the behavior of F . It is

F = − g

2πρ

1

z0

+ c(T ) +
gc

8πρ
(3πρ2 − 1)z0 + O(z3

0
) . (3.2)

Combining this with (3.1), we get

F = −κ0

r
+ c(T ) + σ0r + O(r3) , (3.3)

where κ0 = g

2π
ρ−2 and σ0 = g

4cρ2.

Having derived the small distance expansion of the free energy, we can now get that

of the singlet free energy12

F1 = F − T ln 9 = −κ0

r
+ c(T ) − T ln 9 + O(r) (3.4)

and compare it with the small distance expansion of the heavy-quark potential at zero

temperature. To leading order, we have the same Coulomb term as in [8]. To get an

agreement at next-to-leading order, we choose

c(T ) = T ln 9 + C . (3.5)

Finally, we fix the value of C by matching it to the constant term of the Cornell potential [9].

This yields

C = −0.25GeV . (3.6)

Actually, our result (3.4) shows that at sufficiently small distances the singlet free

energy of the pair is temperature independent. So, the agreement with the lattice data [4, 7]

is very satisfactory at this point.

Our next goal is to analyze the long distance behavior of F . As noted in section 2,

large r corresponds to z0 ∼ zmin. So, we need to study the behavior of (2.11) and (2.16)

near z0 = zmin. In this case a crucial observation is that the integrals are dominated by

the upper limits, where they take the form
∫ 1

dv/
√

a(1 − v) + b(1 − v)2. Such an integral

may be found in [10]. At the end of the day, we have

r = −w ln (zmin − z0) + O(1) , F = −σTw ln (zmin − z0) + O(1) , (3.7)

where w = 2
√

σ/(fσ′′)
∣

∣

z=zmin
and σT = g

2π
σ
∣

∣

z=zmin
.

11To this order, the calculation is identical to that of [8].
12Here we assume a pure SU(3) gauge theory.
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Figure 5: String tension in units of σ versus temperature in units of T1.

This means that at long distances the free energy of the pair shows the desired confining

behavior

F = σTr + O(1) , (3.8)

with the string tension

σT = σ
e t−1

t

(

1 − t2
T 4

T 4
σs

)
1
2

, t = 3
T 2

1

T 2
sin

(

1

3
arcsin

T 2

T 2
1

)

. (3.9)

Here σ denotes a tension at zero temperature. Explicitly, it is given by σ = ge
4π

c [8]. We

have also introduced the critical temperature Tσs
= 1

π

√

c
2 ≈ 210 MeV obtained from the

spatial string tension in [1].

As expected, the string tension σT is a decreasing function of T. In figure 5 we have

plotted σT/σ against T/T1.

We conclude this subsection by making a few remarks.

(i) It is quite interesting that the tension shows very little dependence on temperature

up to T ≈ 0.8T1 ≈ 100 MeV.

(ii) Unlike the coefficient σT of the linear term in the large distance expansion of F ,

the coefficient σ0 of the linear term in the small distance expansion turns out to be

independent of temperature.

(iii) The free energy of the pair is written in parametric form given by eqs.(2.11) and (2.16).

Since we do not know how to eliminate the parameter z0 and find F as a function

of r, we present the result of numerical calculations. In figure 6 the free energy F

versus r for a temperature below T1 is shown.

3.2 Entropy and energy at low temperature

We have already mentioned that in the literature the entropy contributions are sometimes

ignored.13 It is therefore of great importance to address this issue.

Having understood the behavior of the free energy, we can easily investigate the prop-

erties of the entropy. Since the free energy shows no temperature dependence at small

13This is the case for AdS/CFT(QCD) too. See, e.g., [5].
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Figure 6: Free energy versus r at T = 0.1 GeV.
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Figure 7: Entropy density versus temperature in units of T1.

distances, it makes sense to focus on long distances, where its behavior is given by (3.8).

In this case a straightforward calculation leads to the following expression

S = −
(

∂F

∂T

)

r

= −1

2
σTr

(

∂ ln f

∂T

)

zmin

. (3.10)

Here we treat f as a function of two variables. Then, using the relations (1.1) and (2.3),

we can compute the entropy density of the pair

S
r

= 8
σT

T

sin2
(

1
3 arcsin T 2

T 2
1

)

3 − 4 sin2
(

1
3 arcsin T 2

T 2
1

) . (3.11)

A closer look at this expression shows that the entropy density grows as the temper-

ature increases. This is the expected result. To complete the picture, we plot the entropy

density against T/T1 in figure 7.

From this figure, we see that the entropy density is close to zero up to temperatures

of order 0.4T1 ≈ 50MeV. Thus, in this temperature range, the entropy contributions are

indeed negligible. It is obvious that the situation changes drastically with the temperature

growth. Therefore, a natural question to ask is whether the entropy contributions play a

major role at finite temperature. To answer this question, we consider the internal energy of

the pair. As usual, it is given by E = F + TS. It is clear from above that E is independent

of temperature at small distances, where it coincides with the heavy-quark potential at

zero temperature. At large distances, the internal energy has a complex dependence on

temperature together with a linear growth with r. Explicitly, it is given by

E = ΣTr , (3.12)

– 10 –
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Figure 8: Tension ΣT in units of σ versus temperature in units of T1.

with the tension

ΣT = σT



1 +
8 sin2

(

1
3 arcsin T 2

T 2
1

)

3 − 4 sin2
(

1
3 arcsin T 2

T 2
1

)



 . (3.13)

The difference with the string tension (3.9) is due to the second factor that is nothing

but the entropy contribution. A direct but lengthy calculation shows that ΣT is a growing

function of temperature. This is in contrast to the behavior of the string tension σT

discussed in section 3.1. Thus, the entropy contributions do play a major role at finite

temperature.

We conclude the discussion with a few short comments:

(i) A temperature growth of the singlet internal energy at large distances was observed

in the lattice calculations of [4].

(ii) The use of thermal AdS as the background metric in the low temperature phase

results in zero entropy.14 This leads to the picture that is completely inconsistent

with physics of a pure SU(3) gauge theory at finite temperature.15

(iii) In figure 8 we plot ΣT versus temperature as provided by the expression (3.13).

(iv) It is tempting to see to what extent our predictions for the low temperature behaviors

of σT and ΣT are in agreement with the lattice data of [7]. Unfortunately, the lattice

data are only available for temperatures close to its critical value.16

3.3 Polyakov loop

As noted earlier, at very large separation the quark and anti-quark become free. In this

case the dominant exponent is given by S∞. So, we are in a situation in which the approx-

imation (2.1) might be applicable. When we use it to find the expectation value of the

Polyakov loop, we get

L = e−
1
2S∞ , (3.14)

14In this case f ≡ 1, so (3.10) gives zero.
15Note that the Hawking-Page transition between the thermal AdS space and the Schwarzschild black

hole was discussed in [11] as a possible dual description of the deconfinement phase transition for large Nc

gauge theories.
16O.A. thanks O. Kaczmarek and P. Petreczky for a discussion of this issue.
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Figure 9: Polyakov loop expectation value versus temperature in units of Tc. The dashed line

denotes the value L∞.

with S∞ the minimal area given by (2.18). Our normalization is stated in (3.5) and (3.6).

With this choice, the Polyakov loop expectation value takes the form shown in figure 9.

Certainly, it has the desired behavior: The expectation value of L is zero at low tem-

peratures, while it is nonzero at high temperatures.17 One sees there is a phase transition

from the confined phase to the deconfined phase, as expected. Numerically, the transition

temperature is of order

Tc ≈ 0.11
√

c ≈ 100MeV . (3.15)

This is roughly twice smaller than the value found in [1] from the spatial string tension.

Thus, the numerical consistency is not good enough at this point.

We chose the normalization constant in the form c(T ) = αT + C. The meaning of the

coefficients is the following: α specifies the value of L at T = ∞

L∞ = e
1
2 (g−α) . (3.16)

C specifies the form of L. Indeed, the expectation value of the loop is a continuously

growing function of temperature for C ≥ 0, while it has a local maximum for C < 0. The

position of the maximum is given by a solution to equation

CT +
gc

π2

∫ 1

0
dx exp{ 1

2
c x2

π2T 2} = 0 . (3.17)

For our set of parameters a numerical analysis of (3.17) results in T ≈ 3.8Tc.

Finally, we can compare the temperature dependence of the Polyakov loop expectation

value as provided by our model with the lattice results of [7]. Here there is a subtle point.

The lattice data are only available for the range 1.03 ≤ T
Tc

≤ 6. This makes it difficult to see

what exactly happens in the low temperature phase as well as for high temperatures. We

now fix the normalization by fitting (3.14) to the data given in table 1 of [7] near T = 6Tc.

In figure 10 we have plotted L against T
Tc

. We find that the temperature dependence is in

good agreement for T & 2Tc.
18

17We consider an absolute value of L.
18Note that a better agreement is obtained by shifting the plot of figure 10 a little bit to the left.

– 12 –



J
H
E
P
0
4
(
2
0
0
7
)
1
0
0

1 2 3 4 5 6
T �Tc

0.2

0.4

0.6

0.8

1

L

Figure 10: Polyakov loop expectation value versus temperature. Here c(T ) = 0.96 T − 0.18. The

dots denote the data from [7].

4. Discussion

What we have learned is that the 5-dimensional effective model we proposed to study the

properties of a heavy quark-antiquark pair at finite temperature turns out to be remarkably

consistent with the qualitative expectations of thermal gauge theory. Moreover, in certain

cases it provides the analytic results which are in good agreement with the lattice data. It

is also worth noting that our model predicts the behavior of the thermodynamic quantities

for low temperatures where field theory is unreliable and lattice data are missing.

There are many issues that deserve to be further clarified. Let us mention some of

them that are seemed the most important to us.

Apparently, the model suffers from a lack of numerical self-consistency: the value of

the critical temperature as seen from the spatial string tension [1] turns out to be at least

twice bigger than the value we found from the analysis of the Polyakov loop in section 3.3.

There are two lines of thought on this problem.

The first is to account for one-loop corrections in the world-sheet path integral (1.5).19

This is a complicated problem. Indeed, it is a challenge to theorists to find the world-sheet

formulation of string theory on warped geometries like AdS spaces. Among many things,

it requires world-sheet fermions and even a world-sheet theta angle that is a two-form field

B with an arbitrary value of
∫

B [12]. But if it was resolved, it could help us to sum

the series (1.6) and hence refine the estimates. There is another interesting problem here.

What were considered in [13] are some low temperature corrections to the string tension.

It will be interesting to find similar corrections in our model.

The second line of thought is to somehow modify the background. It may include a

slight revision of the metric (1.1) or more radical changes like additional background fields.

For instance, a recent proposal of [14] is even to include the tachyon background. If a

modification is made, it would produce a number of additional free fit parameters that

makes it less attractive for phenomenology. To escape the problem, a clever mechanism for

reducing the number of parameters must be invented.

Part of the interest of AdS/CFT(QCD) stems from attempts to understand the physics

of RHIC. The reasons are the following: First, a quark-gluon plasma is strongly coupled,

19The model under consideration is an effective theory. It already includes some, but not all, quantum

corrections in the approximation we used. The remaining corrections are due to string fluctuations.
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so the perturbative QCD is of limited utility. Second, the lattice data do not always

provide good information like, for instance on transport properties. On the other hand,

AdS/CFT(QCD) offers an alternative way of dealing with this real-world problem.20 It

would be particularly interesting to see if our model can shed some light on this subject.

Acknowledgments

O.A. would like to thank O. Kaczmarek, P. Petreczky, M.I. Polikarpov, and E. Shuryak

for useful communications and conversations. The work of O.A. was supported in part by

Max-Planck-Gesellschaft, Deutsche Forschungsgemeinschaft, and Russian Basic Research

Foundation Grant 05-02-16486.

References

[1] O. Andreev and V.I. Zakharov, The spatial string tension, thermal phase transition and

AdS/QCD, Phys. Lett. B 645 (2007) 437 [hep-ph/0607026].

[2] O. Andreev, 1/Q2 corrections and gauge/string duality, Phys. Rev. D 73 (2006) 107901

[hep-th/0603170].

[3] L.D. McLerran and B. Svetitsky, A Monte Carlo study of SU(2) Yang-Mills theory at finite

temperature, Phys. Lett. B 98 (1981) 195.

[4] O. Kaczmarek, F. Karsch, P. Petreczky and F. Zantow, Heavy quark free energies, potentials

and the renormalized Polyakov loop, Nucl. Phys. 129 (Proc. Suppl.) (2004) 560

[hep-lat/0309121].

[5] The literature on the Wilson loops at finite temperature is vast. The following is an

incomplete list:

E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131];

S.-J. Rey, S. Theisen and J.-T. Yee, Wilson-Polyakov loop at finite temperature in large-N

gauge theory and anti-de Sitter supergravity, Nucl. Phys. B 527 (1998) 171

[hep-th/9803135];

A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops, confinement

and phase transitions in large-N gauge theories from supergravity, JHEP 06 (1998) 001

[hep-th/9803263];

D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string theory,

Phys. Rev. D 58 (1998) 106002 [hep-th/9805129];

H. Dorn and H.J. Otto, Q anti-q potential from AdS-CFT relation at t >= 0: dependence on

orientation in internal space and higher curvature corrections, JHEP 09 (1998) 021

[hep-th/9807093];

S.A. Hartnoll and S. Prem Kumar, Multiply wound Polyakov loops at strong coupling, Phys.

Rev. D 74 (2006) 026001 [hep-th/0603190];

S.-J. Sin and I. Zahed, Ampere’s law and energy loss in AdS/CFT duality, hep-ph/0606049;

H. Boschi-Filho, N.R. d. F. Braga and C.N. Ferreira, Heavy quark potential at finite

temperature from gauge/string duality, Phys. Rev. D 74 (2006) 086001 [hep-th/0607038];

20For a recent review, see [15].

– 14 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB645%2C437
http://arxiv.org/abs/hep-ph/0607026
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C107901
http://arxiv.org/abs/hep-th/0603170
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB98%2C195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C129%2C560
http://arxiv.org/abs/hep-lat/0309121
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C505
http://arxiv.org/abs/hep-th/9803131
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB527%2C171
http://arxiv.org/abs/hep-th/9803135
http://jhep.sissa.it/stdsearch?paper=06%281998%29001
http://arxiv.org/abs/hep-th/9803263
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C106002
http://arxiv.org/abs/hep-th/9805129
http://jhep.sissa.it/stdsearch?paper=09%281998%29021
http://arxiv.org/abs/hep-th/9807093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C026001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C026001
http://arxiv.org/abs/hep-th/0603190
http://arxiv.org/abs/hep-ph/0606049
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C086001
http://arxiv.org/abs/hep-th/0607038


J
H
E
P
0
4
(
2
0
0
7
)
1
0
0

K. Kajantie, T. Tahkokallio and J.-T. Yee, Thermodynamics of AdS/QCD, JHEP 01 (2007)

019 [hep-ph/0609254];

H. Boschi-Filho and N.R. d. F. Braga, AdS/CFT correspondence and strong interactions,

hep-th/0610135.

[6] D.A. Kirzhnits and A.D. Linde, Macroscopic consequences of the Weinberg model, Phys. Lett.

B 42 (1972) 471;

L. Dolan and R. Jackiw, SYMmetry behavior at finite temperature, Phys. Rev. D 9 (1974)

3320;

S. Weinberg, Gauge and global SYMmetries at high temperature, Phys. Rev. D 9 (1974) 3357.

[7] O. Kaczmarek, F. Karsch, P. Petreczky and F. Zantow, Heavy quark anti-quark free energy

and the renormalized Polyakov loop, Phys. Lett. B 543 (2002) 41 [hep-lat/0207002].

[8] O. Andreev and V.I. Zakharov, Heavy-quark potentials and AdS/QCD, Phys. Rev. D 74

(2006) 025023 [hep-ph/0604204].

[9] E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane and T.-M. Yan, Charmonium: the model,

Phys. Rev. D 17 (1978) 3090; Charmonium: comparison with experiment, Phys. Rev. D 21

(1980) 203.

[10] I.S. Gradshteyn and I.M. Ryzhik, table of Integrals, Series, and Products, Academic Press

(1994).

[11] E. Witten, as cited in [5];

C.P. Herzog, A holographic prediction of the deconfinement temperature, Phys. Rev. Lett. 98

(2007) 091601 [hep-th/0608151].

[12] See the discussion of E. Witten in [5].

[13] R.D. Pisarski and O. Alvarez, Strings at finite temperature and deconfinement, Phys. Rev. D

26 (1982) 3735.
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